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A NONLOCAL FREE ENERGY DENSITY FUNCTIONAL
APPROXIMATION FOR THE ELECTRICAL DOUBLE LAYER.
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Department of Chemical Engineering and Materials Science,
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Submitted to Journal of Chemical Physics (November, 1989).

ABSTRACT

We construct a free energy density functional approximation for the primitive model
of the electrical double layer. The hard sphere term of the free energy functional is based
on a nonlocal generic model functional proposed by Percus. This latter model functional,
which is a generalization of the exact solution for the non-uniform hard rod model, requires
as imput the free energy of a homogeneous hard-sphere mixture. We choose the extension
of the Carnahan-Starling equation of state to mixtures. The electrostatic part of the
non-uniform fluid ion-ion correlations present in the interface, is approximated by that of
an homogeneous bulk electrolyte. Using the mean spherical approximation for a neutral
electrolyte, we apply the theory to symmetrical 1:1 and 2:2 salts in the restrictred primitive
model. We present comparisons of density profiles and diffuse layer potentials with Gouy-
Chapman theory and Monte Carlo data. When available, we also compare our results
with data from other recent theories of the double layer. For highly charged surfaces, the
profiles show the layering of counterions and charge inversion effects, in agreement with
Monte Carlo data.
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I. INTRODUCTION

Understanding the behavior of charged particles near charged surfaces is an impor-
tant problem in physical chemistry. Separation of charge in response to the field of the
charged surface is refered to as the electrical double layer. Double layers are present in
electrochemistry in the form of the electrode/electrolyte interface, and they often play a
major role in the stability of soap films, colloidal dispersions, and biological membranes.
As a result of the occurrence of double layers in numerous situations, there has been a con-
siderable effort to describe them theoretically. The early theory that met with significant
success was that of Gouy [I] and Chapman [2) and was based on the Poisson-Boltzmann
equation. More recently, theory has been built on more rigorous methods of the statistical
mechanics of the liquid state [3]. Because the physical systems in which double layers
occur are generally quite complicated (for a recent review see Ref. [4]) theoretical efforts
have been directed towards determination of the properties of greatly simplified models.
The Gouy-Chapman theory [1-2] was developed for a model of point charges next to a uni-
formly charged planar surface, for example. A later modification of this theory by Stern
[5] , known as the modified Gouy-Chapman theory (MGC), is based on the same model.
This description is quite accurate provided the real ionic radius is not too large compared
to ionic spacing and the charge on the surface and on the particles are relatively small
(low density-weakly coupled systems). At higher densities or for highly coupled systems,
the core interaction becomes important. Thus, to take into account of the finite size of
the charged particles, many authors focused their attention on a model electrical double
layer composed of charged hard spheres at a hard, planar, polarizable, uniformly charged
surface. The ions are assumed to be immersed in a continuum with a dielectric constant
which may be different from that of the charged wall. This model is known as the primitive
model (PM) of the double layer.

There is a considerable body of recent work on the PM double layer. For testing
theory, the Monte Carlo (MC) simulations by Valleau and co-workers [6], are especially
significant. There is the work on the modified Poisson-Boltzmann (MPB) approximation
[7], which is based on the Kirkwood [3] hierarchy. In that approach the effects of the
wall on the ion-ion correlations are handled in a natural way. On the other hand, the
work based on the singlet Ornstein-Zernike (OZ) equation [8] with the mean spherical
approximation (MSA) or the hypernetted chain approximation (HNC) stresses on a more
careful treatment of the effects due to the finite size of the ions while the direct ion-ion
correlation functions near the surface are approximated by the functions calculated in the
bulk solution [9]. There is also work based on the Born-Green-Yvon (BGY) equation
[10-111. By using phenomenological expressions for the inhomogeneous pair correlation
functions as closures for the BGY equation, this latter method emphasizes the importance
of properly handling the ion-ion correlation functions near the wall. The BGY equation
exactly satisfies the contact theorem [3]. This is especially important in the high density-
high coupling regime. The recent work by Fortsmann and collaborators [12,13], in which
the ion-ion direct correlation functions are computed using the MSA at a local non-neutral
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concentration (HNC/LMS A), is also aimed at building into the theory good pair correlation
functions. Similar in spirit to the work of Fortsmann and collaborators is that of Kjellander
and Marceija [14], in which the double layer interaction between two uniformly charged

surfaces inmersed ia an electrolyte solution is calculated. Perhaps the most accurate recent

work is that of Plischke and Henderson [15]. In that work, the inhomogeneous OZ equation
with the HNC and MSA closures were solved together with the Lovett-Mou-Buff-Wertheim
equation [16] for the density profiles of the ions (OZ/LMBW).

Double layers are good examples of strongly inhomogeneous systems. In an elec-
trolyte, especially at elevated surface charges, the density variations near the electrode are
extremely large. The situation of an ion near the wall is totally different from that of a
similar ion in the neutral bulk. Ideally, a double layer theory should take into account the
correlations arising from both the hard-core repulsion and the electrostatic interactions.
Because these correlations are strongly dependent on the distance from the wall, only a few
theories ae able to handle properly the ion packing near the electrode. According to MC
results for 1:1 electrolytes [6],at high electrode charges the counterions start the formation
of a second layer before the first layer is densely packed. Of the theories mentioned above,
only the HNC/LMSA, the BGY, the Kellander and Marcelja and the OZ/LMBW theories
are able to predict the formation of the second layer of counterions.

Parallel to the development of the double layer theories, the last decade has seen a
geat deal of activity in the study of non-uniform fluids using free energy density functional
theories. This method, which originated with van der Waals f17), requires the construction
of an expression for the free energy of the inhomogeneous system. Even though the rigor-
ous statistical mechanics formalism of density functional theory was established more than
twenty years ago [18,19], the reduction of the exact results to tractable accurate approxi-
mations has been the goal of many, more recent investigations [20-26]. Treatments based
on local density approximations have proven useful to describe weakly structured systems,
like fluid-fluid interfaces [20-22], or fluids in weak external fields, but are not applicable to
the strong inhomogeneities characteristic of fluid-solid interfaces. In order to handle the
strong inhomogeneities present in fluid-solid interfaces, a nonlocal approach was introduced
by Nordholm and coworkers [23) in their generalized van der Waals theory (GVDW). Since
then, systematic improvements in the method in which finite size effects are considered
have been published [24,26]. Applications of nonlocal theories include the studies of the
structure of confined fluids [27-30], capillary condensation [31,32), layering transitions [33],
and the planar electrical double layer [34]. Very recently, the nonlocal smoothed-density
approach (SDA) due to Tarazona [24], was extended to binary hard sphere mixtures with
arbitrary size ratio [35].

In this work, we present a theory for the electrical double layer in which the effects due
to the finite size of the particles are considered within the framework of a generic nonlocal
functional proposed by Percus [36] and generalized to multicomponent fluids by Vanderlick
et a. [29]. This generic functional can be used to generate the functionals of several known
nonlocal approaches [30]. These include the GVDW, the SDA, and a functional proposed
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by Robledo and Varea [371, and by Fischer and Heinbuch [381, as a generalization of Percus'
exact solution of the one dimensional hard-rod system [39]. We use the latter, termed here
generalized hard-rod model (GHRM), to construct a model functional for the electrical
interface. Its advaritage over the OZ/LMBW theory used by Plischke and Henderson is
that its working equations are much cheaper to evaluate.

The article is as follows. The PM of a planar double layer is described in Sec. II. The
general free energy density functional formalism for the electrical double layer is presented
in Sec. III. In Sec. IV we report our results for the density profiles and electrostatic
potential and compare these with the MC results of Valleau and co-workers [61 and with
results of some of the theories mentioned above.

II. PRIMITIVE MODEL

In the primitive model of the electrical double layer, the electrolyte is assumed to be
a fluid of charged hard spheres of charge qo and diameter d, inmmersed in a dielectric
continuum of dielectric constant e. Separating the Coulombic and short-range repulsive
contributions to the pair interaction, we have

Urr') = o0 j r - r' 1) + u (r r- r' ) (2.1)

where
uc(r)= 1/er , (2.2)

and

ur(r) = oo, r < (d, + do)/2= 0, r > (do + do)/2. (2.3)

The electrode is considered to be an infinite flat hard wall with a uniform charge density
a. This impenetrable hard wall produces a repulsive potential, for particles of species a,
of the form

v'(x) = oo, x < d/2,
-0 , x > d,/2, (2.4)

where x is the ion's distance to the plate. On the other hand, the uniform surface charge
density gives rise to a Coulombic potential of the following form

vc(z) = -2ra I x I/e + C, (2.5)

where C is a constant which depends on the choice of the point of zero potential.

In order to eliminate image charges, the dielectric constant is also taken to be e in the
region x < d. /2. The total external potential can now be written as

v0 (x) = qv'(z) + v'(z). (2.6)
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A quantity of an enormous importance in the electrical double layer theory is the mean
electrostatic potential. The mean electrostatic potential 0(r) at a point r is related to the
density distribution functions n,,(x) in the following way

0(r) = vc(x) + J d3 r'uc(j r - r' I) 1 qno(x'). (2.7)

The formal solution to Poisson's equation yields the following expression for the mean
electrostatic potential

-'(X) = 4 dx'(x - x') q,^,(x'). (2.8)

The boundary conditions used in arriving at Eq.(2.8) are (oo) = 0, and

dV(x) Z=o'- -4ra (2.9)

dx

In the derivation of Eq. (2.8) we required

j dx' E qnar(x') = -o, (2.10)

which is the constraint of overall electroneutrality of the system. From Eq. (2.8) we can
observe why the mean electrostatic potential evaluated at the closest approach distance is
frequently used as a measure of the charge separation in the double layer.

III. DENSITY FUNCTIONAL FREE ENERGY THEORY

General formalism

We start our study of the double layer problem with a discussion of the grand canonical
density functional formalism for a mixture of ionic species in an external field. In this work
we adopt the general approach due to Morita and Hiroike [40], De Dominicis [41], Stillinger
and Buff [42] and to Lebowitz and Percus [43], and used later by many investigators [20-
22,44]. The particle-particle direct correlation functions of a non-uniform fluid which
appear in the formalism allow us to write an exact expression for the density distribution
functions. The same formalism has been used by Fortsmann and collaborators [13] as the
starting point of their HNC/LMSA theory of the double layer. This approach, which is
due to Mermin [45] and was employed by Hohenberg and Kohn 146] for the inhomogeneous
electron gas, is naturally expressed in the language of the grand canonical ensamble.

The properties of an interface and its coexisting bulk fluid are determined by the
constancy of the chemical potentials, pa, and temperature,T, throughout the system. The
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free energy appropriate to the grand canonical ensamble is the grand potential. For a
mixture of particles of different kinds (a - 1,..., c), the grand potential functional is

4 = -kTn-, (3.1)

where E is the grand partition function and k is Boltzmann's constant. The equilibrium
density distribution is an unconstrained minimum of the grand potential functional, Q2,
where

!Q{n}) = F({n}) - d J d3ry n(r). (3.2)

Here, F({n}) is the Helmholtz free energy functional of the system and {n} denotes the
functional dependence of Qt and F on the particle densities, nh(r), a - 1, ... , c.

For a mixture of charged particles of species at absolute temperature T in the field of
an external potential vc,(r), the grand potential functional can be written as

!Q({n}) = Z J d 3 rn0 (r)(v0 (r) - i , )

@ (3.3)

+ k - Jd 3 rr(r)[1n(A3n(r)) - 1] - O({n}).

The second term on the rhs of Eq.(3.3) is the ideal gas contribution to the Helmholtz free
energy and Ac is the thermal de Broglie wavelength of particles a. The term -8 in the
same equation corresponds to the interparticle interaction contribution to the free energy.

The grand potential functional fQ({n}) is minimized, for fixed v0 (r) and u0 (r,r'),
when n0 (r) takes its equilibrium value. In that case, Q corresponds to the equilibrium
grand potential function. The functional -0, on the other hand, can be used as a gener-
ating functional for n-body correlation functions, in particular, from the first functional
derivative we obtain:

1 64({n}) =c(r; {n}), (3.4)
U 6fl,(r)

while the second functional derivative of 0({n}) defines the Ornstein-Zernike direct corre-
lation function

kT1 n 0(r)6na(r) n c0,(r, r'; {n}). (3.5)

The equilibrium condition can then be expressed as

6f1({,}) = kTen(n0 (r)/() + v0 (r) - kTc,(r; {n}) = 0, (3.6)
6n,(r)

where c = A; 3 exp(014i) is the fugacity of component a in the mixture and 3 = 1/kT.
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By functional integration between an initial state n', and a final state n, it is possible
to obtain

O(fn}) = (Q{n'}) + kTZ d3'rn.(r) - n'(r)]c.(r; {n'})

+k Z JJ d3 rd 3 r'[na,(r) - n'(r)] (7

x [ n(r') - n (r')] dA dAc,(r, r'; A).

In order to obtain this result, the linear density path,

n,(r; A) = n2(r) + A[na(r) - n'(r)],

was used for the integration. The parameter A can take values in the interval 0 < A < 1.
Equations (3.3), (3.6) and (3.7) can now be employed to write the following expression for
the grand potential functional:

= ({n'}) + Z[d3rnc,(r)[v,,(r) -

+ kT d J drn. 2(r)fn(nc(r)/n& (r))

- kT d J dra[,n(r) - n'(r)] a (3.8)

-kTZ: J J3rd 3r'[na,(r) - n' (r)][n#(r') - n r)

x jo dAf dA'c,,(r, r'; A').

When dealing with long-ranged Coulombic potentials it is convenient to define a short-
range part of the direct correlation function cs (rr') by

ca(r, r') = -qcq~uC(j r - r' 1) + cs'(r, r'). (3.9)

The short-range correlation function, cSR(r, r'), can be further separated by substracting
from it the hard-sphere contribution,cHS(r, r'). This is,

AcoB(r, r') = cap(r, r') - c.0#(r, r'). (3.10)
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These definitions allow us to rewrite the grand free energy functional as

SQn)= 11(fnil) + d3J dnrnQ(r) [v,,,(r) - v,',(r)]

+ kTZ Jd'rnz(r)en(nc,(r)/n,(r))

- kT I J d3r[n,,(r) - n.,(r)]
a f

+ J d3rd3r'[na(r) - n'(r)][n6(r') - n'(r')]qaqu'(i r - r' I)

kTZJ drd 3 r'[na,(r) - n' (r)][n0(r') - (r)

x j dA j dAc.,(r, r'; A') + AFHS({n}).

The last term on the right hand side of Eq.(3.11) represents the excess free energy change,
between the initial state ni , and the final state n, produced by the hard sphere interaction

exclusively (in the presence of the other interactions).

Using the equilibrium condition, Eq.(3.6), we can obtain the following formal expres-

sion for the equilibrium density profiles n,(r):

kTen(n,(r)/n (r)) = -(v'(r) - v' (r)) - q,(4P(r) - i'(r))

+ kT d dr'[n(r') - n'(r')] j dAAce#(r, r'; A) (3.12)

6zAFHS({ n})

6na(r)

In the derivation of Eq(3.12) use has been made of the definition of the mean electrostatic

potential, Eq. (2.7).

Generalized hard-rod model

The formalism presented above must be completed by specification of a model func-
tional for the excess free energy of a hard-sphere mixture. Generalizing the exact result
for an inhomogeneous system of hard-rods, Percus [36] and Vanderlick et a.[29] have de-

fined a generic free energy functional for the inhomogeneous hard sphere fluid. In three
dimensions, the free energy function of a hard sphere mixture is [29]

Fe'ce"s = fd3rfiI(r)F({i(r)})' (3.13)
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where Fo({n(r)}) is the excess free energy per particle of a homogeneous mixture of hard
spheres evaluated at the position r and ii'(r) and n"(r) are coarse grain densities. Each
one of these densities is defined by a weighting function of the relative position to the hard
sphere center, and, in the most general case, is also a functional of the density distribution,

iV.(r) = J d3r'va(r - r'; {n})n,(r'), (3.14)

fi(r) = d3r'ir.(r - r'; {n})nc(r'). (3.15)

Use of definitions (3.14) and (3.15) for a uniform fluid mixture gives the following normal-
ization conditions:

J d'rv,,(r - r'; {n}) Jd'rra(r - r'; {n}) = .(3.16)

In order to establish a theory for strongly inhomogeneous fluids based on Eqs.(3.12)-(3.16),
a particular form for the weighting functions v and r must be specified. The assignment
of weighting functions generates different model density functionals. A disscusion of how
different appropriate selections of weighting functions generate several important model
functionals can be found in Ref.(30). Of particular importance for this work are the forms
of v(r) and r(r) proposed by Robledo and Varea [37], and by Fischer and Heinbuch [38] as
three dimensional generalizations of the hard-rod model. This model, termed here Gener-
alized Hard Rod Model (GHRM), is characterized by the following weighting functions:

V,(r - r') = 6((d,/2)- I r - r' I)/(4fr(d4/2)2), (3.17)

r,,(r- r') = H((dc/2)- I r - ' I)/(41r(d,/2)'/3), (3.18)

where d is the diameter of the particles in the fluid, 6(r) is the Dirac delta function, and

H(r) is the Heaviside step function!

H(r)= 1, r> 0, (3.19)
=0, r<0.

In this model, the coarse grain density Ai.(r) is the average density of species over the
surface of a sphere of radius d,/2. The coarse-grain density Ci(r) is the average density
of species inside a sphere of radius d/2.

The functional in Eq. (3.13) allows us to determine an expression for the free energy
change AFHS({n}) appearing in Eq.(3.11). It is

AF FHS({n}) = _ d3r dA (ii(r; A)Fo ({fi(r; A)})). (3.20)
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Using this expression we can finally rewrite our equation for the equilibrium density profiles,
Eq.(3.12), as

kTen(n,(r)/n.(r)) = -(v'(r) - v' (r)) - q,(O(r) - ;k'(r))

+ kT E d'r'[n,6(r') - n'(r')] jdA A c,(r, r'; A)
'o

-A . t(r)j (rA

dA f(r) 0F 0 ({fr(rI;A} f;r;A

(3.21)

To study a bulk fluid in equilibrium with a planar electrode we now identify the

initial state { n i } with the neutral bulk electrolyte. This corresponds to an homogeneous
solution in *hich no external forces are present. Since we are considering an infinite plane
with uniform charge density , local densities vary only in the direction x normal to the

wall. Additionally, Eq.(3.21) requires the knowledge of inhomogeneous direct correlation

function in excess over the hard sphere,Ac 0 .(r, r'), for all the possible positions r and r'
across the interface. Since these correlation functions are not known, we approximate the
function AcO(r, r') with the function Ac,(1 r - r' 1) of the homogeneous neutral bulk
electrolyte in equilibrium with the interface, this is

Acc(r, r'; A) a5 Ac,,(r, r'; A = 0) = Acc9(I r - r' I). (3.22)

It is convenient to emphasize here that Ac,,(I r - r' 1) is a pair correlation function for

a neutral bulk electrolyte whereas the interface is locally non-neutral. With this approx-

imation, and by using Eq.s (3.14) and (3.15) for the GHRM, Eq.(3.21) can be rewritten,
for a planar symmetry, as

nc,(x)l,,= exp{-Oq k(x)

- j°° dz'v-.(x - x')OF0({fir(x')}) + OFo(n)

d'(') F (x)) -,X') + 81nF0 (n, (323)

+ f dr'[r&e(x') - n#]Ac,,,(j r - r' 1; f{n})},

for x < da/2,

and
n,(x) = 0, for x > d./2.
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For the planar symmetry the coarse grain densities fii(x) and fir(x) can be writtcn as

Wii(x) -J Vxa(x - x')n,,(x')dx', (3.24)

and
i1(x) = J r-O(x - X')nc(x')dx', (3.25)

where the reduced weighting functions v.c, and rz, are defined by

Vxa(x) = J f v,(r)dydz, (3.26)

r a(X) = J J rc(r)dydz. (3.27)

After integration over coordinates y and z, we obtain, for the GHRM,

VX'(x) = H((d./2)- Ix I)/d, (3.28)

rz,(x) = 6H((do/2)- I x I)((da/2)2 - x 2 )/d 3 . (3.29)

We approximate now the excess free energy per particle F of the homogeneous hard-
sphere fluid by the Carnahan-Starling equation of state [47]. This equation was generalized
to a mixture of hard spheres of different sizes by Mansoori et al. [48]. The expression for
the free energy is

F.T 3 1 + Y1"t 2 +r Y3) +t (3Y2 +r 2Y/3)(I - )-

kT 2 +Y 1 / (3.30)
+ (1 - I - Y2 - y3)( )2 + (Y3 - 1)fn(l -

where where7r -E , G, -"v,n,,, v,= 6 -do,. (3.31)

a

The variables yl, Y2, and Y3 are defined as follows:

Y1 = 1 1 Aa6(da + dO)/(dad) 1 /2 (3.32)

Y2 2 Z A='(dad6 )* / (3.33)

y13 M , ]n/~ (3.34)



an d
(vv,6) nn$(d, - d,6) 2 /(nd d,). (3.35)

In the last two equations, n is the total number density given by ", n,.

In their study of fluids confined between planar walls, Vanderlick et al. [30] compared
three different approximate density functional free energy theories of inhomogeneous fluids
for hard spheres and Lennard-Jones potentials. Their study included the GHRM and the
SDA due to Tarazona [24]. The results of that study show that whereas the GHRM is
quantitatively inferior to the SDA, it is qualitatively correct. Since the GHRM captures the
qualitative behavior of confined hard-sphere and Lennard-Jones fluids and retains enough
mathematical simplicity we are encouraged to apply it to more complicated systems.

MSA Approximation for Ac,,,(I r - r' j)

It follows from Eq.(3.23) that our description of the electrical planar interface is still
not complete without a prescription for bulk phase direct correlation functions Ac0 D(I
r - r' I). Several choices can be immediately invoked from bulk electrolyte theory. A
simple choice is to use the direct correlation functions of the MSA. The MSA is a relatively
accurate approximation which generates analytic expressions for the direct correlation
function of several important model potentials [49]. Waismann and Lebowitz [50] showed
that the integral equation resulting from the Ornstein-Zernike equation, has an analytical
solution when the MSA closure for the restricted primitive model(RPM) is employed. The
RPM is a still simpler model in which all ions have the same size; d.. = d. For the RPM,
the MSA provide the following expression for the function Ac, (I r - r' I):

Ac"(s) = -Oqaq [(2B/d) - (B/d) 2 s - 1/s] , s < de(3.36)

-0 s>d,

where s =1 r- r' I and
B [c + 1 - (1 + 2p)1]/, (3.37)

and 4' = KDd. The quantity 'TD is the inverse Debye screening length given by
C

KD = (4nr/e) n~q,. (3.38)

The solution given by Eq.(3.36) holds for an arbitrary number, c, of ionic species provided
global charge neutrality is maintained,

C

n,q, 0 0. (3.39)

The MSA direct correlation function is an important piece in the formulation of the
HNC/MSA theory of the double layer [9]. In that theory, the approximation

cB(r, r'; A) 2 c B(r, r'; A = 0) = caO(I r - r' I) (3.40)
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is made; thus, the effect of the external potential and the inhomogeneities of the interface
on c(r, r') are entirely neglected. We believe that this approximation is more severe than
the similar approximation of Eq.(3.22) used in this work.

IV. RESULTS

In this section we present our results for the density profiles, mean electrostatic poten-
tial profile, and diffuse layer potential drop for solutions containing symmetrical 1:1 and
2:2 electrolytes. The results are compared with existing MC data and, when possible, with
results obtained from several other approximations. The calculations were performed by
means of the method of subdomains, finite element basis functions, collocation weighted
residuals, [51] and Newton iteration with initialization chosen by parametric continuation
[52]. We choose quadratic Lagrange interpolating polynomials as basis functions. This nu-
merical technique was applied before to the solution of PY, HNC [52] and MSA [531 integral
equations for bulk simple fluids and was extended by Mier y Teran et al. [9] for solving
the HNC/MSA integral equation for the double layer problem. A detailed comparative
discussion about the application of this method to the solution of HNC/MSA equation for
the double layer RPM and its efficiency and accuracy can be found in Ref.(54).

With the algorithm mentioned above, we reduced the set of Eqs.(3.23) to a system of
algebraic equations for the values of reduced density profiles at the nodes: gai = n,(xj )/n.
This nonlinear set of equations is solved by Newton's method. The iterative process is
continued until the Euclidean norm of the updates after iteration k + 1 becomes less than
10-10:

2 N1
I ", (k+1) (k) 2 2010

= tt < 1 (4.1)

where N is the number of nodes in the domain d/2 < x < R, and R is the cutoff value for
,he integrals in Eqs.(3-23). Both the number of nodes N and the value of R depend on
concentration. We used a uniform mesh in the domain d/2 < z < R.

Either the charge density, a, or the electrostatic potential at the electrode, 0e, can
be specified and the equations solved. At very low charge densities, ar, or potentials,
0., we found it convenient to use the MGC density profiles as an initial guess. Once a
solution for certain values of the parameters is found, initial estimates at other values
for the parameters can be found easily by a first-order continuation technique. Typically,
three to five Newton iterations are needed to reach convergence. After convergence was
attained, the value of a or the value of o,, depending on which quantity was used as
the parameter, were computed using Eq.(2.8) or Eq.(2.10) respectively. The agreement
with the value of a or 0.' originally used to solve the equations gives an indication of the
accuracy of the numerical method. Except for the very low concentration regime, Eq.(2.8)
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or (2.10) was satisfied to at least five significant figures. In the most dramatic case treated;
1:1 electrolyte at 0.01 M, the dimensionless Debye distance, IC1 becomes very small and
Eq.(2.8) or (2.10) was satisfied to four significant figures only.

8

In our calculations we have used dimensionless parameters. We express all lengths
in units of the diameter d. The dimensionless surface charge is a* = ad/e, where e is
the magnitude of the electronic charge. Similarly the dimensionless potential profile is
,*(x)= IeO(x). In order to compare with the MC data of Valleau and co-workers, [6] we

fixed the value of the plasma parameter to F =3e 2 /ed - 1.6809. This value corresponds
to

E = 78.5, T = 298K and d = 4.25A.

1:1 electrolytes

We solved Eq(3.23) for electrolytes ranging from 0.01-2 M and surface charge ranging
from 0.05-0.9. In Table I we list the dimensionless diffuse layer potential, 3eO(0), where
0(0) is the potential drop between the point of closest approach to the surface and infinity.
Note that the position of the wall has been shifted to x = - d/2. In Table I we also display
the MC results [6], those of MGC, BGY [11], MPB5 [7] theories and the OZ/LMBW
results obtained recently by Plischke and Henderson [15] using the HNC closure. The
general agreement of our results with the MC data is quite good. A clearer comparison of
our results for 1:1 electrolytes with MC data is given by Fig. 1 where we plot the diffuse
layer potential V*(0) as a function of the reduced charge density a*. As reported before
by other authors, [11,15] in the low concentration regime, density profiles become very
long ranged and special numerical difficulties appear. We believe that the discrepancies
between our results and the MC data at c = 0.01 M can be attributed , at least in part,
to this cause. The crosses shown in Fig. 1 are the results of Plischke and Henderson [15].

The classical MGC theory, which neglects the finite size of the ions, predicts an interfa-
cial thickness which is greater than that obtained by MC simulations for low surface charge
densities, and smaller than that of the MC data for large a*. This phenomenon is evident
at 1 M concentration. In Fig. 2 we plot the diffuse layer potential as a function of surface
charge density for c = 1 M. In that figure we also display the MC data, and the results
obtained from the approximations listed in Table I. The agreement of our results with MC
is very good and in some cases of comparable accuracy with those obtained by Plischke
and Henderson [15] with the OZ/LMBW and the HNC closure. The data available for the
MPB5 theory show an excellent agreement with MC data. Unfortunately the data are for
low values of a* only, and because of the secondary role played by the excluded volume
effects in the MPB5 theory, it is not expected that the theory can be applied at higher
surface charges where the size effects are very important. The BGY theory of Caccamo et
al., Ref.(11), wich is very good for low a* fails to predict the change in curvature showed
by the MC results at intermediate charge densities.

The . lassical theory of Gouy-Chapman always predict monotonic variation for the
density profiles of both coions and counterions. In contrast, for 1:1 electrolytes, the MC
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results of Valleau and collaborators [6] for the structure of the RPM double layer exhibit
interesting layering effects for high surface charges. In Fig. 3 we present a comparison of
our results for the Oensity profiles of a double layer for a bulk density of c = 0.1M and
a* = 0.30, with those corresponding to MC simulation and the MGC theory. Our results
agree quite well with the MC results. All the profiles showed are monotonic in this case.
In Fig. 4 we plot the mean electrostatic profile which correspond to the same condition
presented in Fig. 3. Again we obtain very good agreement with the MC results. The MGC
theory is relatively succesful in describing both density profiles and mean electrostatic
potential at c = 0.1M and a* - 0.30.

In Fig. 5 we present, with solid lines, the counterion and coion density profiles obtained
in this work for c = 1M and a* = 0.42. For comparison, in the same figure we show the
MC and MGC results. Also shown in the figure are the results obtained by Plischke and
Henderson for the OZ/LMBW theory with the MSA closure. It is important to mention
at this point that, for this concentration and surface charge, the results of the OZ/LMBW
theory with the MSA closure are in very good agreement with those of the same theory
when the HNC closure is employed [15]. The MC results clearly show the onset of the
formation of a second layer of counterions near x/d = 1. Since the MGC theory is a
point charge theory, it does not predict the layering phenomenon. On the other hand, the
OZ/LMBW theory accurately follows the behavior of the MC data. It is interesting to
see that the density functional theory presented in this paper is also able to predict the
formation of the second layer of counterions. However, the position of the second layer is
clearly shifted towards the electrode. The theory also exaggerates the size of the second
peak. The coion density profile predicted by the density functional theory agrees quite
well with MC data and is almost indistinguishable from that of the OZ/LMBW theory.

At a bulk concentration of c = 1M and a charge density a* = 0.7, a second layer
of counterions is clearly formed. In Fig. 6 we compare the density profiles predicted by
MGC, OZ/LMBW, and density functional theories with the MC results for that conditions.
Again the MGC theory predicts monotonic profiles while the OZ/LMBW theory very well
predicts both the position and magnitud of the second layer. Again the density functional
theory overemphasize the value of the density of the second layer. As in Fig. 5, the
position of this layer is shifted towards the electrode. This can be a consequence of the
way in which the GHRM takes into account the hard-core effects. The GHRM predicts, for
a hard-sphere fluid near a hard wall, a density profile with a second peak shifted towards
the wall when compared with simulation results. See Ref. (30).

The mean electrostatic potential profile wich corresponds to the last conditions pre-
sented is shown in Fig. 7. The agreement between the density functional theory and the
MC results is very good. The density functional theory is able to predict the presence
of a very shallow minimun in this function. A similar minimum is present in the MC
results. The mean electrostatic potential function is not very sensitive to the details in the
structure of the double layer.
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2:2 electrolytes

We have computed results of our density functional theory for two concentrations:
0.05 and 0.5 M. In the lower part of Table I we display some results of this work for the
diffuse layer potential and compare with those of the theories previously mentiuned. We
find reasonable agreement with MC data.

In the case of divalent electrolytes, the MC results show the interesting phenomenon
of charge inversion. This phenomena, which is a result of both hard-core and electrostatic
interactions, consists in the formation of a second layer of coions next to the first layer
of counterions. In Fig. 8 we plot density profiles for a double layer at c = 0.5M and
a' = 0.1704. Nearly all the counterion charge is concentrated into a thin layer next to the
wall. The response of the system to this dipole layer is the formation of a layer of coions
within x = d and x = 2d approximately. As can be seen in Fig. 8, the density functional
theory is predicting the charge inversion phenomenon. We obtained a counterion density
profile in very reasonable agreement with MC data. On the other hand, our theory tends
to underestimate the magnitude of the maximun in the coion profile. As expected, the
MGC theory totally ignores the charge inversionn

In Fig. 9 we show the mean electrostatic potential profile for the same conditions
presented in the previous figure. The MC simulations result in a potential profile which
is oscillatory with a minimum of about -0.2 just beyond one diameter from the wall. Our
density functional theory predicts the oscillatory behavior and is in very good agreement
with the MC data.

V. SUMMARY

We presented a nonlocal free energy density functional theory for the electrical double
layer. Within the frame of the grand canonical formalism, we construct a free energy
functional of the density distribution. We then separate the short ranged part of the
inhomogeneous direct correlation functions which appear in the formalism into a hard-
sphere term and a residual term. The residual term contains the correlations arising from
the Coulombic interactions between particles in the fluid. The hard-sphere part of the
free energy functional is then approximated by a generic functional proposed by Percus
[36] as a three dimensional generalization of an inhomogeneous hard-rod system. We used
its extension to mixtures due to Vanderlick et al.[29]. This generic nonlocal functional
requires the specification of two coarse- grain densities. In this work we choose to use
the weighting functions proposed by Robledo and Varea [37] and by Fischer and Heinbuch
[38] to generate a GHRM functional for the free energy of an inhomogeneous hard-sphere
system. In our calculations we approximate the free energy of a bulk hard- sphere mixture
with the Carnahan-Starling [47] expression. The residual inhomogeneous direct correlation
functions are approximated with those corresponding to the neutral bulk electrolyte which
is in equilibrium with the interface. Use is made of the analytical solutions of the MSA
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[47].

The GHRM free energy density functional theory described in Sec.III correctly de-
scribes the physical features presented by the MC simulations for 1:1 and 2:2 RPM elec-
trolytes. For 1:1 electrolytes the theory predicts the layering of counterions which occurs
when the charge of the electrode is increased. Although the theory exaggerates the mag-
nitude of the counterion layering, predicts a diffuse layer potential which is in very good
agreement with the MC data. For 2:2 electrolytes, the theory predicts the charge inversion
phenomenon and values of the diffuse layer potential which are in good agreement with
MC results. In general, there are small quantitative rather than qualitative differences
between the MC results for the density profiles and mean electrostatic potential and those
obtained in this work.

Even when calculations with the GHRM density functional theory axe relatively sim-
ple, the theory competes in accuracy with the more sophisticated OZ/LMBW theory [15].
Because of its simplicity, the GHRM theory requires only a small fraction of the computing
time used to solve the OZ/LMBW theory. For the 1:1 electrolyte at c = IM, our code
requires only 240 s of a Cray2 CPU time to calculate solutions and mean electrostatic
potential profiles at 15 different values of reduced charge densitya*, with a uniform mesh
of 241 nodes, for example.

From a density functional formulation similar to that presented here, Fortsmann and
collaborators [131 used in the interface ion-ion correlation functions of homogeneous elec-
trolytes with non-neutral compositions. Instead, in our work we are employing a nonlocal
GHRM functional for the hard sphere part of the free energy and neutral bulk electrolyte
correlation functions for the residual electrostatic part. Use of non-neutral composition
residual electrostatic correlations is left for future work.

The results of the GHRM for a hard-sphere system near a hard-wall, reported in
Ref.(30) show a poor quantitative agreement with MC results. Since a very good agreement
between the functional theory and the MC results for the planar double layer is reported
in Sec. IV, one can naturally ask if a fortuitous cancellation of error is occurring when we
combine the hard-sphere free energy functional with the MSA solutions for the electrostatic
part of direct correlation functions. The answer to this question probably can be given by
solving the theory for a more accurate functional for the hard-sphere contribution to the
free energy. The SDA of Tarazona [24] seems to be a good option for this purpose. We
hope to contribute to the solution of this question in the near future.
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FIGURE CAPTIONS

Fig. 1 Reduced diffuse layer potential, OeO(0), as a function of the charge density, ad2/e,
for 1:1 electrolytes. Solid lines represent the results of the GHRM functional
density theory presented here for 0.01 M, 0.1 M, 1 M and 2 M. Open circles,
solid squares, solid circles and open squares are the corresponding MC results.
The crosses (x) are the results of the OZ/LMBW theory with the HNC closure,
Ref.(15).

Fig. 2 Reduced diffuse layer potential, Oe(0), as a function of charge density, ad2 /e,
for 1 M, 1:1 electrolytes. The solid line represents results of the functional density
theory. Solid circles are the MC results of Valleau and collaborators, Ref. (6).
Solid squares correspond to the MPB5 theory [7], open circles to the BGY theory
[11], and open squares to the OZ/LMBW theory with the HNC closure, Ref. (15).

Fig. 3 Reduced density profiles, n(x)/n, for a 1:1 electrolyte at c = 0.1M and a* = 0.30.
The dots are the MC results. The dashed lines correspond to the MGC theory
and the solid lines to this work. Note that the wall is at x = -d/2.

Fig. 4. Reduced mean electrostatic potential profile for a 1:1 electrolyte at c = 0. 1M and
a* = 0.3. All symbols as in Fig. 3.

Fig. 5 Reduced density profiles, n(z)/n, for a 1:1 electrolyte at c = 1M, a* = 0.42. The
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dots are the MC results. The dashed lines correspond to the MGC theory, the
dot dashed lines to the OZ/LMBW theory with the MSA closure, and the solid
lines to this work.

Fig. 6 Reduced density profiles, n(x)/n, for a 1:1 electrolyte at c = IM and a* = 0.7.
All symbols as in Fig. 5.

Fig. 7 Reduced mean electrostatic potential profile for a 1:1 electrolyte at c = 1M and
a* = 0.7. The dots are the MC results. The dashed lines correspond to the MGC
theory and the solid line to this work.

Fig. 8 Reduced density profiels, n(x)/n, for a 2:2 electrolyte at c = 0.5M and a* =
0.1704. The dots are the MC results. The dashed lines correspond to the MGC
theory and the solid lines to this work.

Fig, 9 Reduced mean electrostatic potential profile for a 2:2 electrolyte at c = 0.5M and
a*.= 0.1704. The dots are the MC results. The dashed line corresponds to the
MGC theory and the solid line to this work.
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TABLE I. Diffuse layer potential

C a* MGC MC' BGY 6  MPB5c PHd This work

1 : 1 electrolytes

0.01M 0.10 5.44 5.05(0.05) - 5.08 4.56 5.26
0.1M 0.30 5.34 4.63(0.03) 5.0 4.74 4.37 4.76
IM 0.10 1.4 1.09(0.06) 1.055 1.03 1.06 1.03

0.25 2.79 2.13(0.05) 2.31 2.10 2.22 2.18
0.42 3.74 3.08(0.1) 3.46 3.02 3.23 3.23
0.55 4.26 4.15(0.15) 4.21 - 4.22 4.12
0.60 4.43 4.38(0.11) 4.48 - 4.68 4.52
0.70 4.74 5.71(0.14) 5.02 - 5.76 5.41

2M 0.396 2.99 2.29(0.09) 2.303 - 2.29 2.19

2 : 2 electrolytes

0.05M 0.20 2.61 1.33(0.02) 1.81 1.36 1.18 1.59
0.5M 0.1704 1.36 0.63(0.04) 0.64 0.537 0.69 0.57

' G. M. Torrie and J.P. Valleau, Ref. (6); 1980 and 1982. Statistical uncertainty is shown in parenthesis.
b C. Caccamo, G. Pizzimenti, and L. Blum, Ref. (11); 1986.
c C. W. Outhwaite and L.B. Bhuiyan, Ref. (7); 1986.
d M. Plischke and D. Henderson, Ref. (15); 1988.
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